
The Definitive Guide to ECON 257D2 

Understanding basic economic statistics (or atleast the second semester) 

 

 

Chapter 1: Distributing Distributions 

The first part of the course mostly dealt with reviewing distributions we had seen last semester. Some 

of the distributions included here were presented later in the semester 

Distribution: A link between the potential outcomes of a random phenomenon and the probabilities 

of them arising. 

• Discrete distribution: A distribution with a finite amount of potential outcomes. 

• Continuous distribution: A distribution with an infinite amount of potential outcomes. 

Description of distributions: 

• Probability density function (or probability function for discrete case) (PDF): Function 

that maps potential outcomes of the phenomena to the probability that they arise. 

• Cumulative distribution function: Function that maps an outcome to the probability of 

getting an outcome or an outcome smaller that outcome. 

• Expected value: Commonly known as the mean, gives the probability-weighted average value 

returned by the distribution (if you were to sum up each potential outcome, multiplied by its 

probabililty, what would you get?) 

o Measure of location (meaning that it tells you roughly where the distribution is situated) 

• Variance: The expected value of the squared deviation of a random variable from its mean (on 

average, how far away is a random variable from its mean) 

o Measure of dispersion (describes how the data is spread out 

Generating probability functions: Anyone can create distribution functions as long as they match 

the following criteria. Existing functions that match this criteria are often used as distribution 

functions. 

• The range of the function must be positive (can include 0) 

o Since there cannot be any negative probabilities, the probability that each outcome is 

mapped to must be positive (the domain however can be the real numbers) 

• The sum of all probabilities of all outcomes must be exactly 1 

• The outcomes must be mutually exclusive 

Distribution parameters: Luckily, distributions aren’t one size fits all; you can use a parameter to 

modify the probability density function of that distribution. In doing so, the value of the parameter 

will usually affect the expected value and the variance 



Important distributions 

• Discrete distributions 

o Poisson distribution: Distribution that takes one parameter, lambda. Was created using 

the power series for 𝑒𝑥 

▪ PDF: 𝑃(𝑥 = 𝑘) =  
𝜆𝑘𝑒−𝑘

𝒌!
 

▪ CDF: 𝑃(𝑥 ≤ 𝑘) = ∑
𝜆𝑘𝑒−𝑘

𝒌!

𝑘
0  

• To find the probability that a r.v. following the poisson distribution has a 

value above k, you can use 1 – probability that it has a value less than k 

▪ 𝐸(𝑥) = 𝜆 

▪ 𝑉(𝑥) = 𝜆 

▪ Converges to normal by CLT since the poisson distribution can be thought of as 

the sum of lambda r.vs. distributed as Poisson(1) 

o Binomial distribution: Distribution that models a random even with outcome 1 

(probability p) and outcome 0 (with probability 1-p), the random event being observed 

n times. The two parameters are n (number of trials) and p (the probability of 

success) 

▪ PDF: 𝑃(𝑥 = 𝑘) =  (𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥 

• (𝑛
𝑥

) =
𝑛!

𝑥!(𝑛−𝑥)!
 

▪  

▪ CDF: 𝑃(𝑥 ≤ 𝑘) =  ∑ (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘𝑘
0  

▪ 𝐸(𝑥) = 𝑛𝑝 

▪ 𝑉(𝑥) = 𝑛𝑝(1 − 𝑝) 

▪ Like the poisson, the binomial converges to the normal (fairly quickly, can use 

normal approximation if np>5 and n(1-p) > 5). Due to it being the sum of n 

bernouilli random variables. 

o Multinomial distribution: Similar to the binomial but instead of there being just 2 

possible outcomes, there is a finite set of possible outcomes. To each possible outcome, 

there is a probability of it arising and we observe N events. 

• Continuous distributions 

o Normal distribution: Arguably the most important statistical distribution, it comes from 

the integral ∫ 𝑒
−𝑥2

2 𝑑𝑥 = √2𝜋 
∞

−∞
. It takes two parameters, 𝝁 being the mean (simply a 

value that is added to the standard normal distribution centered at 0) and 𝝈 being a 

value that multiplies the standard normal distribution (typically multiplied by 1) 

▪ PDF: 𝑃(𝑥 = 𝑘) =
1

√2𝜋𝜎
𝑒

−(𝑥−𝜇)2

2𝜎2  

▪ CDF: 𝑃(𝑥 ≤ 𝑘) = ∫
1

√2𝜋𝜎
𝑒

−(𝑥−𝜇)2

2𝜎2  𝑑𝑥 
𝑘

−∞
 

▪ 𝐸(𝑥) = 𝜇 

▪ 𝑉(𝑥) = 𝜎2 



▪ The normal distribution is symmetric around its mean, with half the probability 

mass being on each side. Thus, 𝑃(𝑥 ≤  𝑧) = 1 − 𝑃(𝑥 ≤-z) 

o T distribution: Arises from a normal divided by the root of a Chi-square (if Z ~ N(0, 1) 

and 𝑊~ 𝑋𝑘
2, then, 𝑿 =

𝒁

√
𝑾

𝒌

~𝒕(𝒌). The only parameter it takes is the number of degrees of 

freedom (otherwise it resembles the standard normal.) 

▪ PDF and CDF and variance: Just look at the tables 

▪ 𝐸(𝑥) = 0 

▪ Converges asymptotically (as the degrees of freedom increase) to a standard 

normal 

▪ Usually used when testing the mean of a normally distributed variable for which 

the variance is unknown (since the sample variance has a chi-squared 

distribution) 

▪ Gives a more conservative estimate than just a normal test 

o Chi-Squared distribution: Arises from the sum of k squared standard normal variables 

with the only parameter it takes being k = number of summed squared standard normal 

variables. K is also equal to the number of degrees of freedom 

▪ PDF and CDF: Look at the table 

▪ 𝐸(𝑥) = 𝑘 

▪ 𝑉(𝑥) = 2𝑘 

▪ The chi-squared distribution is not symmetric 

o F distribution: Arises from the division of one chi-squared random variable by another 

(which means that squaring a student’s t distributed r.v. gives a F distribution as well). 

Takes 2 parameters (first being the degrees of freedom of the chi-squared in the 

numerator and the second being the degrees of freedom of the chi-squared in the 

denominator) 

▪ PDF and CDF: Look up in table 

▪ The F distribution is not symmetric 

 

Chapter 2: Experts Estimate a… 

In this relatively short chapter, we looked mostly at what estimators are, their properties and some 

commonly used ones. 

Estimator: An estimator is a random variable that, as the name implies, estimates the value of a 

population parameter (usually through the use of sample data). This random variable has its own 

distribution with its own expected value/variance. 

Estimator properties: The following properties are useful for evaluating/comparing estimators: 

• Bias: The bias of an estimator relative to the population parameter it estimates is equal to the 

difference between expected value and the population parameter (𝐸(𝑥̅) − 𝜇) 



o If the estimator is unbiased, we have that 𝐸(𝑥̅) = 𝜇 

• Consistency: An estimator is considered consistent if, as N approaches infinity, the estimator 

converges towards the true population parameter. 

o For this to be true, we need the estimator to be unbiased and for its variance to 

converge to 0 as N approaches infinity 

• Efficiency: The variance of the estimator (smaller is obviously more desirable) 

o The BLUE (Best Linbear Unbiased Estimator) is the one with the highest efficiency (lowest 

variance) 

o Relative efficiency: The efficiency of an estimator relative to another is the ratio of their 

variances 

Common estimators and their distributions: The following estimators are commonly used in the 

tests in the upcoming section. They are provided with their distribution 

• Estimators when 𝑿 ~ 𝑵(𝝁, 𝝈𝟐) 

o Sample mean:  𝑥̅ =
1

𝑁
∑𝑥𝑖  ~ 𝑁 (𝜇,

𝜎2

𝑁
) 

o Sample variance: 𝑠2 =
1

𝑁−1 
∑(𝑥𝑖 − 𝑥̅)2 ~𝑋𝑁−1

2  

• Estimators when X ~ Bin(n, p) 

o Estimated parameter:   𝑝̂ =
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝑡𝑟𝑖𝑎𝑙𝑠
~𝑁(𝑝,

𝑝(1−𝑝)

𝑁
) 

 

Chapter 3: Putting Things to the Test 

And here lies the biggest part of the course, learning about various ways of testing hypotheses for 

different distributions. To do so we, need the essential elements of a statistical test. 

Elements of a statistical test: 

• Hypotheses: 2 mutually exclusive possibilities 

o Null hypothesis: The hypothesis we are trying to reject (formulated as population 

parameter = a certain value) 

o Alternative hypothesesis: The hypothesis we are comparing it to (formulated as the 

population parameter is bigger or smaller than a certain value, or simply different) 

• Test statistic: It is a random variable with its own distribution that satisfies 2 criteria 

o Needs to be a function of the sample measurement and the population parameter we 

are looking for (where the population parameter is the only unknown). 

o Its probability distribution should not be a function of the population parameter. 

• Rejection Rule: A rule basically saying if the test statistic is above or below a certain value, we 

reject the null. 

When we perform these tests, there is always a certain chance that our ultimate verdict is wrong 

(probability that we make a certain error) 

Types of errors 



• Type I error (𝜶): Probability of rejecting the null when it is true 

o Usually only care about a type I error since it is considered more harmul to make one 

o Alpha is also called the level of the test 

• Type II error (𝜷): Probability of accepting the null when it is false 

o 𝟏 − 𝜷 is the power of the test 

• Error tradeoffs: For a fixed N (and as such, a fixed amount of information), reducing the 

probability of making one type of error increases the probability of making the other type of 

error. 

o Alternatively, reducing the power of the test also reduces the level of the test 

Additionally, when performing our tests, we need to consider the sidedness of the test which affects 

the way we formulate the alternative hypothesis and ultimately the decision rule we use. 

Sides of test: Since we usually test the hypothesis at a certain probability, the side of the test will 

affect which boundary we use for the decision rule.  

• One-sided test: The alternative hypothesis is that the population parameter is below or above 

a certain value. 

o Since we are testing against the parameter being above a certain value, we only reject 

the null when the test statistic is above a value that makes it such that the probability of 

the null being true is below a certain percentage. 

• Two-sided test: The alternative hypothesis is that the population parameter is different than a 

certain value. 

o Since we are testing against the parameter being different than a certain value, we only 

reject the null when the test statistic is above or below a value that makes it such that 

the probability of it being above or below that value is a certain percentage (thus we 

split the probability we are checking for between the areas above and below) 

Instead of testing at arbitrary levels, we can also get the probability of getting a value as extreme as 

the one taken on by the test statistic which brings up the notion of p-value. 

P-value: The smallest 𝛼 for which we would  reject the null hypothesis 

• A small p-value indicates more compelling evidence against the null 

• The p-value can be used to test the hypothesis (if the p-value is below the alpha we want to 

test for, we can reject) 

• For a two-sided test, the p-value is the probability of getting a value of the test statistic that’s 

that extreme, divided by two 

Finally, we can use confidence intervals to determine a likely interval in which the population interval 

lies 

Confidence interval: Another random variable that consists of an upper and lower bound for the 

parameter. A 100(1 − 𝛼)% confidence interval is an interval such that the probability that the 

parameter lies in it is 1 − 𝛼 



• If the null hypothesis isn’t in the 1 − 𝛼 confidence interval, then we would reject the null for a 

two-sided test at level 𝛼 

o For a one-sided test, we just get an interval with one bound 

Great! We’ve now got all the tools to perform hypothesis tests. Now for a long list of tests that vary 

based on what we are testing. 

 

Test of a mean of a normally distributed variable (unknown variance, 𝑿~𝑵(𝝁, 𝝈𝟐)) 

• Hypothesis: 𝜇 = 𝑐 

• Test statistic: 𝑇 =
𝑥̅−𝜇

𝑠

√𝑁

 ~ 𝑡(𝑁 − 1) 

• If the variance was known, we would simply use it in the calculation of the test statistic and use 

the normal distribution 

Test of population proportion (X ~ Bin(N, P)) 

• Hypothesis: 𝑝 = 𝑝0 

• Test statistic: The test statistic we use depends on the value of NP and N(1-P). If both are 

above 5 we can use the normal approximation, or else we use the binomial. 

o Binomial: 𝑁𝑝̂ ~ 𝐵𝑖𝑛(𝑁, 𝑝) 

o Normal: 𝑇 =
𝑝−𝑝

√
𝑝(1−𝑝)

𝑁
 

~ 𝑁(0, 1) 

Test of difference in means, matched pairs, dependent samples (𝑿~𝑵(𝝁𝒙, 𝝈𝒙
𝟐), 𝒀~𝑵(𝝁𝒚, 𝝈𝒚

𝟐)) 

• In this test, we have a sample of matched pairs with both elements coming from separate, 

normal distributions. We want to test if their mean is the same or different. We can construct a 

new random variable which consists of the difference between one element of the matched 

pair and the other. 

o Let 𝐷 = 𝑋 − 𝑌 

▪ To compute the sample data for D, calculate the difference for each matched 

pair. You can then consider the resulting sample of data as D and calculate its 

sample average and variance as you normally would 

• Hypothesis: 𝜇𝐷 = 𝐷0 

• Test statistic: 𝑇 =
𝐷̅−𝐷0

√
𝑠𝐷
𝑁

 ~ 𝑡(𝑁 − 1) 

Test of difference in means, independent samples (𝑿~𝑵(𝝁𝒙, 𝝈𝒙
𝟐), 𝒀~𝑵(𝝁𝒚, 𝝈𝒚

𝟐)) 

• Unlike last time, we have two samples of data but they are not linked in matched pairs. The 

number of sample points for each sample can differ. 

• Hypothesis: 𝜇𝐷 = 𝐷0 

• Test statistic: The test statistic we use depends on what information we know about the 

distributions. 3 cases are possible 



o Both variances are known 

▪ 𝑇 =
𝐷̅−𝐷0

√
𝜎𝑥

2

𝑁𝑥
+

𝜎𝑦
2

𝑁𝑦

 ~ 𝑁(0, 1) 

o Variances are the same but unknown 

▪ 𝑇 =
𝐷̅−𝐷0

√
𝜎2(𝑁𝑥+𝑁𝑦)

𝑁𝑥𝑁𝑦

~𝑡(𝑁𝑥 + 𝑁𝑦 − 2) 

▪ Where 𝜎2 =  
1

𝑁𝑥+𝑁𝑦−2 
(∑(𝑥

𝑖
− 𝑥̅)

2
+ ∑(𝑦

𝑖
− 𝑦̅)

2
) 

o Variances are different and unknown 

▪ 𝑇 =  
𝐷̅  −𝑑

√
𝑠𝑥

2

𝑁𝑥
+

𝑠𝑦
2

𝑁𝑦 

 ~ 𝑡 (𝑖𝑛𝑐𝑟𝑒𝑑𝑖𝑏𝑙𝑦 𝑙𝑜𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟𝑚𝑢𝑙𝑎)  

Test of difference in proportion for large samples 

• Here we are testing whether two binomially distributed sets of data share the same probability 

of success 

• Hypothesis: 𝑝1 − 𝑝2 = 𝑐 

• Test statistic: The test statistic we will use depends on our null hypothesis (if we are testing if 

they are the same, then they will have the same variance, otherwise they will not) 

o 𝑯𝟎: 𝒑𝟏 − 𝒑𝟐 = 𝟎 

▪ 𝑇 =
𝑝1̂−𝑝2̂

√
𝑝̃(1−𝑝̃)(𝑁1+𝑁2)

𝑁1𝑁2

 ~ 𝑁(0, 1) 

▪ 𝑝 =
N1𝑝1̂+𝑁2 𝑝2̂

𝑁1+𝑁2
 

o 𝑯𝟎: 𝒑𝟏 − 𝒑𝟐 = 𝒄   

▪ 𝑇 =  
𝑝1̂ −𝑝2̂ −𝑐

√
𝑝1̂(1−𝑝1̂)

𝑁1
+

𝑝2̂(1−𝑝2̂)

𝑁2

 ~ 𝑁(0,  1) 

 

Test of variance of normally distributed variable (𝑿~𝑵(𝝁, 𝝈𝟐)) 

• Here the goal is to test whether the variance of a parameter has a certain value, even though 

we don’t know the population mean. 

• Hypothesis: 𝜎2 = 𝑎 

• Test statistic: 
𝑠2 (𝑁−1)

𝜎2
 ~ X(𝑁−1)

2  

Test for equality of variance (works for independent samples) (𝑿~𝑵(𝝁𝒙, 𝝈𝒙
𝟐), 𝒀~𝑵(𝝁𝒚, 𝝈𝒚

𝟐)) 

• In this test, we have 2 independent samples and we are checking if their variances are equal 

• Hypothesis: 
𝜎𝑥

2

𝜎𝑦
2 = 1 

• Test statistic: 
𝑠𝑥

2

𝑠𝑦
2  ~ 𝐹(𝑁𝑥 − 1,  𝑁𝑦 − 1) 

o Make sure to pick the largest sample variance as numerator 



 

Chapter 4: My Goodness of Fit! 

In this chapter, we looked at tests to see if a given sample fit distributions that we know the PDF of. In 

general these tests consist of knowing certain moments of an existing distribution and checking if the 

corresponding moment of the sample data matches that moment of the existing distribution. 

 

Test for normality 

• We know that the skewness of a standard normal is 0 and the kurtosis is 3 

• Test of skewness 

o Hypothesis: 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 0 (against alternative it is equal to 0) 

o Test statistic: 
𝑠𝑘̂

√
6

𝑁

 ~ 𝑁(0,  1) 

▪ Where 𝑠𝑘̂ =
1

𝑁−1
  ∑(𝑥𝑖−𝑥̅)3

𝑠3  

• Test of kurtosis 

o Hypothesis: 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 3 (against alternative it is not equal to 3) 

o Test statistic: 
𝑘̂ −3

√
24

𝑁

 ~ 𝑁(0,  1)    

• Jarque-Bera test: Test whether skewness is equal to 0 and if kurtosis is equal to 3 

o Hypothesis: Data is normally distributed (against alternative it is not) 

o Test statistic: 𝐽𝐵 =
𝑁( 𝑠𝑘̂)

2

6
+

𝑁( 𝑘̂)
2

24
 ~ 𝑋2

2 

▪ We reject the test statistic exceeds the value of 𝑋2
2 at level alpha (one-sided test) 

 

Test for multinomial: Instead of testing whether the data is normally distributed, we test whether the 

data fits a multinomial where the probability of each outcome being picked is equal 

• Hypothesis: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑐 =
1

𝑐
 against the alternative that this is not true for any pair 

• Using the observed counts for each outcome, we compare them to the expected counts for 

each outcome, giving us a normally distributed test statistic for each outcome.  

o 
𝑁𝑖 −𝑒𝑖

√𝑒𝑖
 ~ 𝑁(0,1)  

• We then sum the square of these test statistics to get a chi-squared test 

o 𝑋2 = ∑
(𝑁𝑖 −𝑒𝑖)

2

𝑒𝑖
 ~ 𝑋𝑐−1

2   (𝑤ℎ𝑒𝑟𝑒 𝑁𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡 𝑎𝑛𝑑 𝑒𝑖 𝑖𝑠
𝑁

𝑐
) 

• Since the test statistic is distributed as a chi-square,we reject if it exceeds the value at level 

alpha 

 



Test for Poisson: In this, test we get count data (ex: we observed 1 person passing by twice, 2 people 

passing by 5 times , …). We want to test if this count data matches a Poisson distribution 

• Hypothesis: The data is distributed as poisson and thus the probability of getting a certain 

count is determined by the probability function 

• Test statistic: Before calculating the test statistic, we must first estimate 𝜆 using the sample 

mean of the counts 

o Using that estimated 𝜆, we can calculate the expected counts for each value (N times the 

probability function at that value) 

o 𝑋2 =
(𝑁0−𝑒0)^2 

𝑒0
+ ⋯ +

(𝑁𝑐−𝑒𝑐)2

𝑒𝑐
~ 𝑋𝑐−2

2 (c is the number of categories) 

• Outliers: If we observe outliers in the count data, we can group them into one category of say 

observations bigger than 15) 

o When using the outliers to estimate lambda, multiply the number of observations bigger 

than 15 by 15 instead of their original value 

o The expected count for that category is the sum of the expected counts of the grouped 

outliers. 

• Helpful to construct a contingency table of the type 

k observations p expected 

0 10 0.66 10 

1 4 0.2 3 

2 1 0.066 1 

 

Test for independence: Unlike the other tests, we are not comparing the sample data to a 

distribution. Instead, we have 2 different characteristics (ex: university major and their GPA category) 

or not as well as counts for intersections of those characteristics (ex: there are 50 Arts with a GPA 

above 3, 70 Science students, …).  

We then want to compare if the the two characteristics are independent, in which case the probability 

of being an arts student and having a GPA above 3 would be equal to the probability of being an arts 

student * the probability of having a GPA above 3. 

• Hypothesis: 𝑝𝑥𝑦 = 𝑝𝑥 ∗ 𝑝𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 

• Test Statistic: 𝑋2 = ∑
(𝑁𝑖𝑗 −𝑒𝑖𝑗)̂

2

𝑒𝑖𝑗̂
 ~ 𝑋(𝑟−1)(𝑐−1)

2  

o 𝑁𝑖𝑗 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡, 𝑒𝑖𝑗̂ = 𝑁𝑝
𝑖
 ̂ 𝑝

𝑗̂
  

 

Chapter 5: Dropping Off Mr. Parametric 



Most of the tests we’ve done so far have depended on knowing something about the distribution of 

the underlying data. Nonetheless, it is possible to perform tests without assuming/knowing the 

distribution of the data. These tests are considered non-parametric. In performing these tests, we are 

usually evaluting the median of the data rather than the mean. 

 

Sign test for matched pairs: We have matched pairs of sample data and we want to see if one the 

values is generally higher or lower than the others. Instead of using the raw data, we can compute a 

new variable S which is equal to 1 if the difference between the values of the matched pair is positive 

and equal to 0 otherwise (if they are the same, discard) 

• Hypothesis: 𝑝+ = 0.5 

• Since under the null 𝑆~𝐵𝑖𝑛(𝑁, 0.5) we can perform a standard test of proportion 

Wilcoxon signed-rank test for matched pairs: Similar to the previous test but we want to take into 

account the magnitude of the differences. 

• Hypothesis: μ
+

= 𝜇
−
 (the average rank of the positive pairs is equal to the average rank of the 

negative pairs 

• Test statistic: Either test statistic can be used 

o 𝑇 =
𝑤+−𝑛𝜇

𝜎
 ~ 𝑁(0,  1) 𝑜𝑟 𝑇 =  

𝑤−−𝑛𝜇

𝜎
 ~ 𝑁(0,  1) 

o 𝑛𝜇 =
𝑛(𝑛+1)

4
 

o 𝜎2 =
𝑛(𝑛+1)(2𝑛+1)

24
 

Rank test for independent samples: The goal of this test is to evaluate whether two independent 

samples of data have the same distribution (in which case they should have the same median). 

• Hypothesis: X and Y have the same distribution 

• Test statistic: We construct a test statistic based on the sum of the ranks which should be 

normally distributed. 

o 𝑇 =
𝑊𝑥−𝑁𝑥𝜇

𝜎
 ~ 𝑁(0,  1) 

o 𝐸(𝑊𝑥) = 𝑁𝑥𝜇 =
𝑁𝑥(𝑁𝑥+𝑁𝑦+1)

2
 

o 𝑉(𝑊𝑥) =
𝑁𝑥𝑁𝑦(𝑁𝑥+𝑁𝑦+1)

12
 

 

Chapter 6: Going Back to Regression 

The final chapter of the course was on the basics of linear regression (how to construct regression 

models, the math behind least squares regression, important theorems and how to perform tests on 

the regression coefficients). 

 

Regression: The general set of techniques for determining relationships between variables. 



• Regression model: Model that seeks to determine the expected value of a random variable 

based on a set of conditioning characteristics 

• The simplest way to do this is to assume there is some linear relationship between the 

dependent and independent variables and try to find the coefficients for that relationship 

Data: The data we use for a regression is usually structured in the following form. 

• 𝑦 =  [

𝑦1

…
𝑦𝑛

] , 𝑋 =  [
1 ⋯ 𝑥𝑘1

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑘𝑛

] 

o First column of X is filed with 1s with the rest of the columns being the value of 

independent variables for each sample point 

o Y is a column vector with the value of the independent variable for each sample point 

Data generation process: The true process that generates the data that we are trying to model 

Basic linear regression model: 𝑌 = 𝛽𝑋 + 𝜖 (the dependent variable is equal to a linear coefficient 

multiplied by each independent variable + an error term for each sample point 

• In matrix form [

𝑦1

…
𝑦𝑛

] =  [𝛽1 … 𝛽𝑘] [
1 ⋯ 𝑥𝑘1

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑘𝑛

] +  [

𝜖1

…
𝜖𝑛

] 

 

Computing 𝜷: To compute the regression coefficients, we want to find the coefficients that minimize 

the sum of squared errors which can be done by taking the derivative set it equal to 0 

• In doing so we get 𝜷̂ = (𝑿′𝑿)−𝟏𝑿′𝒚  

o Betahat is an unbiased consistent estimator and we can estimate its variance using 𝜎2̂ =
𝜖̂′𝜖

𝑛−𝑘
 

 

Variances: It is important to know the covariances matrices for 𝛽̂ and 𝜖 to perform tests on the 

regression coefficients. These are derived by simplifying the expressions for the variance. 

• Covariance of 𝜷̂: 𝑐𝑜𝑣(𝛽̂) = 𝜎2(𝑋′𝑋)−1 

• Covariance of 𝝐: 𝑐𝑜𝑣(𝜖) = 𝜎2𝐼 

 

Residuals: The discrepancies from the model for each sample point (𝜖̂ = 𝑦 − 𝑋𝛽̂) 

• SSR (Sum of squared residuals): ∑𝜖𝑖
2̂ 

• SST: ∑(𝒚𝒊 − 𝒚̅)𝟐 

• 𝑹𝟐 = 𝟏 −  
𝑺𝑺𝑹

𝑺𝑺𝑻
 

o Also known as the goodness of fit of the model, it measures how much of the 

independent variable can be predicted from the dependent variables 



 

Performing tests: There is a general procedure for testing the value of the regression coefficients 

• Hypothesis: 𝑎′𝛽̂ = 0 

o 𝑎 = [
𝑎1

𝑎2
] (𝑠𝑜𝑚𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) 

• Test statistic: 
𝑎′𝛽̂

𝑆𝐸(𝑎′𝛽̂)
~ 𝑁(0, 1), 𝑜𝑟 𝑡(𝑛 − 𝑘) 

o 𝑣𝑎𝑟(𝑎′𝛽̂) = 𝑎′𝑣𝑎𝑟(𝛽̂)𝑎 

 

Other considerations: 

• Dealing with qualitative variables: Create a dummy variable that takes on the value of 1 if 

the sample has that characteristic or 0 otherwise 

• Non-invertibility: If X is not of full rank (there are linearly dependent columns or rows), then 

X’X is not invertible either 

• Taylor’s theorem: We can approximate a non-linear functions using a linear function 

(however, the quality of the approximation worses as we get farther away from the point of 

approximation) 

• Correlation and omission issues: If you omit a variable that is correlated to another that you 

include and they both have an effect on the independent variable, then the regression will 

overestimate the impact of the variable that was included 

o Not an issue for a predictive model but can cause problems if you’re examining 

causation 

 

Gauss Markhov Theorem: States that with certain assumptions, the OLS estimator is BLUE. The 

assumptions required for this theorem are: 

• 𝑦 = 𝑋𝛽 + 𝜖 

o There is a linear relationship between y and X 

• X is an n x k  matrix of full rank 

o The columns of X are linearly independent 

• 𝐸(𝜖|𝑋) = 0 or 𝐸(𝑋′𝜖) = 0 

o On average, the residuals have value 0 for any value of X 

• 𝐸(𝜖𝜖′|𝑋) = 𝜎2𝐼 

o Essentially states 2 things: 

▪ Homoskedasticity: The variance of all epsilons is the same 

▪ The errors terms are independent (covariance is 0) 

• X is generated by a mechanism unrelated to 𝜖 (can be fixed or random) 

 


